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B. Transverse Magnetic Field

The conductivity tensors under an applied magnetic
field are calculated by integrating over electronic
states. The carrier distribution function, f(e) is involved
only in the form of df/de or f(1— f) in the integrand.?3
For the case of a Fermi distribution at a low tempera-
ture, the distribution function introduces into the
integrand approximately a § function, 8§(e—{), where
¢ is the Fermi energy under the applied field. In photo-
conductivity where the photoexcited carriers may be
considered as monoenergetic and the excitation is not
too strong, we have f«d(e)/pr and (1— f)~1 where ps
is the density of states at the final energy e Thus we
may expect that approximately

(14)
(15)

Avgy orrF(ef)/pf ’
Aoz a2 (€) /oy,

where o (¢;) is the conductivity of degenerate carriers
with the Fermi energy equal to e¢. The quantity p,
exhibits a maximum whenever e coincides with a
Landau level. At high magnetic fields, o..” gives minima
whereas o,,” gives maxima near Landau levels, there-
fore, p; enhances the oscillation of photoconductivity

1S, S. Shalyt and A. L. Efros, Fiz. Tverd. Tela 5, 1233 (1962)
[English transl.: Soviet Phys.—Solid State 4, 903 (1962)].
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in a longitudinal field and counteracts the effect of
oz” for the oscillation in a transverse field. This is
consistent with the fact that oscillations observed in
transverse fields were less pronounced than those
observed in longitudinal fields and that sometimes the
additional structure appeared even reversed as indi-
cated by Fig. 5.

The above consideration applies to high magnetic
fields with w.~>1. In a weak field with w71, the
maxima of ¢,,” near Landau levels involve the lateral
drift motion due to scattering among quantized orbits
and are more uncertain than the minima in ¢..” which
are mainly the effect of the distribution of electronic
states on scattering. This situation can be seen in the
results of de Haas—Schubnikov effect measurements on
n-type GaSb.* With ws<Z2, the ratio of observed
oscillation amplitudes of transverse and longitudinal
magnetoresistances was smaller than expected from the
theory for w,r>>1. It would be desirable to extend the
photoconductivity measurements to higher magnetic
fields but it should be borne in mind that only Landau
levels within 7w, of the band edge produce structures
in the spectrum.

14 W, M. Becker and H. Y. Fan, in Proceedings of the Seventh
International Conference on the Physics of Semiconductors, Paris,
1964 (Dunod Cie., Paris, 1964), p. 663; T. O. Yep and W. M.
Becker, Phys. Rev. 144, 741 (1966).
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A statistical theory of energy levels and position probability is derived for a one-demensional, statistically
dilute, many-impurity crystal. The equations are evaluated for a simple model. It is shown that two impurity
bands are generated, one above and one below the host band, each merging without a gap onto the host band.
If U is greater than (less than) zero, the upper (lower) band is more dense. Each impurity-level electron is
shown to be distributed in a wavelike manner along the impurities. The equations are derived for impurities
differing both in their self-energy and in their nearest-neighbor coupling from the host monomers.

I. INTRODUCTION

T is well known that impurities in crystals result in
the appearance of so-called localized ‘‘impurity
states,” separated from the main band by a gap. The
conditions for the appearance of such localized states
and their location can be determined by the Green’s-
function method of Koster and Slater.!™* A very similar
situation occurs for excited states in molecular crystals,
where impurities again generate, under specified condi-

* Research supported by a contract from the U. S. Atomic
Energy Commission.

1 G. F. Koster and J. C. Stater, Phys. Rev. 95, 1167 (1954).

2 G. F. Koster, Phys. Rev. 95, 1436 (1954).

3 G. F. Koster and J. C. Stater, Phys. Rev. 96, 1208 (1954).

tions, localized levels in the neighborhood of an exciton
band.*® Lifshitz% considers a disordered system, i.e., a
nonregular impurity distribution, and calculates the
spectral density by expanding in powers of the impurity
concentration.

In his theory there is only one parameter which
describes the impurity distribution, namely, the mean
distance between impurities, related inversely to their
concentration. Impurity-impurity coupling is taken into
account, but only as a small perturbation on an infi-
nitely dilute system.

4R. E. Merrifield, J. Chem. Phys. 38, 920 (1963).

5 S. Takeno, J. Chem. Phys. 44, 853 (1966).
6 I. M. Lifshitz, Advan. Phys. 3, 483 (1964).
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II. DERIVATION OF MANY-IMPURITY BAND

In this paper we take a somewhat different approach
from Lifshitz. The basic equation of the Koster-Slater
method! for a many-impurity problem with no interband
mixing is

X(0) =X X(j) T V(5,§)Gpi=0, (1)

where X(p), X(j) are the coefficients of the Wannier
amplitudes at the pth and the jth site occupied by an
impurity. V(4,7), the impurity matrix element con-
necting site 7 and 7 of the lattice and G,;, is the Green’s
function connecting these sites:

1~ dk
Gpi= —
2] _» E—e(k)

¢ (p—ni) | (2)

Here E is the desired energy, e(k) the energy levels of a
band of the unperturbed Hamiltonian, and #n,, #;
measure the distance between the pth and the ith
elementary cell in units of @, the cell dimension. We
now assume (a) a one-dimensional crystal; (b) V (3,7)
=0,;U; (c) many (2m—1) impurities, where (d) the
average distance between two impurities, Lo=7a obeys
no>1. We simplify the notation to

y=1—UGs,
vi=UGj,

and hence the equation yielding the impurity energy
levels for a particular impurity distribution is

Yy —Yi2 — Y3
— Y12 Yy Y

© —Yiem—1

=0. @3
y

But our two assumptions (d) and (e) justify truncating
the Green’s-function sequence after the nearest-neighbor
impurity term—i.e., we only include those Green’s
functions which couple a given impurity to its nearest
impurity on either side. In Eq. (3) we therefore neglect
all v,; except ¥s:11, ¥ii1; this equation reduces therefore
to the following:

y —yp 0 0 0 0
— Y12 Yy —Y3 0 0 0
Ao 1= 0 — Y23 Y Y3 0 0]=0. (4)
0
y

This determinant can be expanded in powers of y, re-
sulting in the following equation:

m—1
gl 3 gpme2l(—1)2B, (2m—1)=0,  (5)
p=1
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where the coefficients B,(2m—1) are

B,(2m—1)
2m—2

rirg: s rp=1
r1#re, e+ 1#rs, ra41---
oo FErp, rpt1

2
y2r1,r1+1y2r2,r2-|-1- .. y rprpt+le (6)

For proof, see Appendix A. Now examine B, more
closely. It is a sum of N,(2m—1) terms, where each
term is a product of p factors. Each of these factors has
the form

) <U 2 v dk / ar
Yrtni ™ 27r> ,/_WE—e(k) L E—e(F)

Xexp[i(k—k') (y—nny)], (7)

i.e., it differs from the other factors only in the number
n.—nrp1, Tepresenting the distance between two adja-
cent impurities. Hence, each term can be uniquely
characterized by the set of p lengths occurring in it.
Let P(n) be the probability that two adjacent im-
purities are separated a distance na. Then, if N,(2m—1)
is large, it follows that a particular term, characterized
by the set #1, #2, . . ., 1, will occur in B, approximately
N,(2m—1)P(ny)P(ns)- - - P(np) times. Hence, also, the
sum over 71, 7s, ..., ¥ can be replaced by a sum over

N1, N2y -« .y Mpy 1.6,
U\
Bp(2m—1)z<——>
2
No
X X N, 2m=1)Pm)P () Pny)
N1,y ..., np=1

T dk w ak’'
Jl
—_— E—‘G(kl) —r E-G(k{)

etn1(ki—k1’)

T dky ™ ak’'
X / gtnp (kp—kp’) , (8)
—r E—e(ky)) _» E—e(ky')
or
B,(2m—1)=(U/2x)**N (p, 2m—1)F?(E), (9)
where

F(E T T % P in(k=k) - (10)
( )—/_WE—e(k)‘/_,rE—-e(k’) n=1 (n)e -

Now consider the following simpler problem. Suppose
that all impurities were equally spaced, so that y12= 123
=y3=0. Then, by Eq. (6),

B,(2m—1)=N(p, 2m—1)Q?».

Our problem is therefore now mathematically identical
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to the problem of equally spaced impurities, where
(U/27)*F =2 But this latter problem can be trivially
solved. Tt has the solution

y=2Q cos(rw/2m), (11)
or ‘
y2=402% cos®(rr/2m), r=1,2,...m—1.
In terms of our analogy,
UF rm
Y= cos>—, r=1,2...m—1 (12a)
m? 2m
or, equivalently,
UF rm
Y= sin>—, r=1,2,...m—1.  (12b)
w2 2m

This same solution can also be generated by finding
N(p,2m—1) and then summing Eq. (5). We present
this method in Appendix B.

In light of the above we can now extend the theory
somewhat by assuming that the impurity differs from
the host not only in the diagonal matrix element of the
Hamiltonian, U, but also in the coupling of the impurity
to its nearest neighbors, i.e., to its adjacent host
monomers. We then relabel:

V(i,7)=08:U1+Us(8:, 541464 1)

Equation (1) then becomes

(13)

X(p) =2 XU G+ Us[ Gpj1tGpia I} =0. (14)

We keep all other assumptions, and hence again
truncate the Green’s functions by keeping only nearest-
neighbor impurity-impurity interactions. Define now

Gpi+l+Gpj—1=GpJ'0 (15)

so that we have simply replaced UG;; in the previous
problem by U+G ;4 U,G;°. Since the dependence of this
new term on interimpurity distance is the same as
before, the arguments of the simpler case go through
exactly as before. We can therefore conclude that for
this two-parameter impurity crystal the impurity band
is determined by the equation

[1-U:G(0)—U6°(0) I

= (1/7?)F (L) cos®(rx/2M), (16)
where
P No
(E)=% P U, ikn
(&) El (n)|: /E—e(k)e
T dk 2
—|—2U2/ etkn cosk] , (A7)
—» E—e(k)
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T T

(E) WS plrpeini
Fi(E)=Uy f P(n)esn =+
V) E— )] E— ) i

dak’
+4U 2 / cosk cosk’
E—eR)) - E—e(k)

N ) ™ dk
X3 P(n)em(’“‘k')—i-ﬁlUle/
n=1 L E— e(k)

T T

Tk N 4
X/ ———————cosk’ 3 P(n)er®=+) (18)
— E—¢e(k) n=1

The energy levels can now be found, using either
Eq. (12b) or Eq. (16), by graphical or numerical means.
At this point we shall simply investigate the question
whether the impurity levels found are separated by a
gap from the main host band. To do so we assume that
e(k*) represents either the top or bottom of the host
band, set E= e(k*)+n, with n — 0. We then find, using
either Egs. (12b) or (16), the condition

sin?(rr/2M)=1%,

which holds for r=%4M. We therefore find no gap—i.e.,
the impurity levels merge directly onto the host band.

III. DERIVATION OF AN AVERAGE IMPURITY
LOCALIZATION PROBABILITY

Since impurities frequently serve as traps, it is of
interest to know the probability of finding the electron
(or the exciton) on a given impurity. In our case we
write down this localization probability for a particular
impurity distribution and then form the average ac-
cording to the assumed statistical distribution function.

To be concrete: Going back to Eq. (1) and making the
stated approximations leads to

yX1— y12xz =0 )

— Vik—1Xt—1F YX5s— Vickp 1X141=0,
k=2,3,...2m—2

— Yom—1,2m—2Xom—o+ YXom—_1=0.

(19)

This set of equations can be solved for the X’s. It can be
shown, for example by induction, that these coefficients
are given by

X2k=X1[y12yzs. o Yor—1,26 ]

k—1
X2 ¥ (—1)7By (2k—1),

p=0
(20)
Xok—1= X1Ey12y23 . Yok 0kt |t

k—1
X3 320D (—1)2B,(2k~2).

»=0
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Now form |Xax/X; |2 It has the form

k—1
[Xor/Xa|2= 3 (—1)pta(y)t-2o-20-2]

(21)
»,¢=0
where J po=DypH i, with
2m—2
Dip=B,2k—1)(IT %)t (22)
1=1
and
2m—2
Hi,=B,2k—1)( Vi) (23)
ey

Now, B,(2k—1) is a sum of terms, with each term being
contained in

2m—2
II 3%
=1
ie.,
2k—2 2m—2
D= 2 ( II )™ (24)
71+ rp=1 l=1

L#r1, rae s 7p

Each of these terms in the sum of Eq. (24) consists of
(2m—2—9p) factors; since p has a maximum of k—1,
and £ has a maximum of m, we have at least m factors
in each term. We can therefore assume that these terms
will contain interimpurity distances in accordance to the
statistical distribution, i.e.,

2m—2

Sp= H
=1
L#rire...rp

Vi, 1= )? (n) P (m1) @m—2—2)

XyZ(n2)P(n2)(2m—2—p) .. .y(nI)P(nz)@m—Z—p) e,
Hence

InS, = In[3(n,) J¥ 0 i)
J

(25)
=(m—2-p) T P(n,) Iny*(n;),

which leads to
Sp=G® ) =exp{ (2m—2 —p)/ P(n) Iny*(n)dn} .
0

Thus

Dip=N(p, 2k—1)G>" 27, (26)
Now consider Hy, which consists of terms each of which
contains ¢+2m—2k—1 factors: Since ¢ could be 1, we
must restrict 2% to run between 1 and m if we wish to
guarantee good statistics. But such a restriction is not
serious since we clearly can assume |X,:/X;|? to be
symmetric about k=m on the average. It follows then
that

Hyy=N (g, 2k—1)G>m 1=+, 27)

3405
We find from (21) that |Xs:/X;]2 is
k—1
| Xor/X1|2= Y. (—1)rFaytb—2r—20-2Gr+a—(2k—1)
a,p=0
XN (p, 2k—1)N (g, 2k—1) (28)

EVE vover o]
= — — 1) (42 —D s
y2> p=0 ) 2k—1-2p
where we have used Appendix B for the value of

N(p, 2k—1). This sum can be represented as a hyper-
geometric series, which in turn is of a standard type, i.e.,

= oo ")

2k—1-2p
k k+s—1
-2 oo )
s=1 23— 1
=k(—=1) 1 (y*/G)oF1[k+1, —k+1;5;9°/4G]  (29)
sin2kz
=(=1)"(¥/G) s
sin2z
where
sin?z=y%/4G. (30)
Hence
Xo |2  sin?2kz
— = . (31)
X1 cos?z

Using the same procedure we can also evaluate
[Xar_1/X1|?%; we find

Xok_1 2 COS2(2k—1)Z
= . (32)
X1 cos?z
By (12b),
uF rm
sin?g= sin>—. (33)
4G 2M

So, given a particular statistical energy level we can
calculate the localization probability corresponding to
that level.

As can be seen from Eqgs. (31) and (32), the electrons
are localized in a wave-like manner along the impurities.
To determine the absolute magnitude of this localiza-
tion, we must normalize these probabilities. This can be
done as follows.

Let Latin symbols 7, j, ...
and let Greek symbols q, ...
cording to (1),

represent impurity sites,
represent host sites. Ac-

X(J)=U 2 xX(0)Gi,
: (34)

X(@)=U . X(i)Gia.
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Hence
2 X () +2 X2()) =1=U* X X(1)x*(m)

X[Z GzaGma+Z Gz]Gm]:l (35)

But the final two sums over « and j simply yield a sum
over all N, crystal sites: The expression in brackets
therefore becomes

% 1 5 1
Gierr: -
= N i [E—e())LE—e(k)]
No
XS etk (BimBr) g=ik! (Rm—Rr) (36)
r=1
1 ¢i(kRi—k' Bm) No
[ pp— Z e Br (k—k') |
N s [E—e(R)J[E—e(k)] =1
But the final sum is N zz. Hence
No 1 etk (Ri—Rm)
Z Gierrz —Z - -
r=1 No & [E—e(k)T
We therefore find
U2 T eix(i—m)dx
1= —2 X(@)x*(m) 37

A [E—e(@]

We now make the nearest-neighbor Green’s-function
truncation, i.e., we keep, for fixed m, i=m, m=4=1. Hence

2 im

cosxdx

U2‘ ™ dx S X (m)+ 4
_ - X2(m
20 l) o [E—e(@) '™ —r [E—e(x) P

XX X*(M)[X(m+1)+x(7n~1)]} . (38)

The final sum causes difficulty. To evaluate it we
remember that

yX (m) = ymm+1X (m—l— 1)+ymm—1X (’}%'— 1)
and replace Ymmi1, Ymm—1 by the corresponding average

y, i.e.,
(n0) U ™ ey
y(no)= — .
21r/7r E—e(x)

We thus get as an approximate normalization
condition

S x(m) [w i
xmy=| — [ ——
m 2r) o [E—e(x) P

y UZ T

+ — B 39)
y(no) 2w/ & [E—e(x)]z] (

cosxdx
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It is important to note that this right-hand-side ex-
pression does not depend on the number of lattice sites
Ny, but on the strength of the impurity and the energy -
of the state.

These expressions can be immediately generalized for
the case where the impurity-host nearest-neighbor
coupling differs from that of the host monomers. The
expression In[y2(#)] in G is replaced by

™ kd
ln[ /
- E

— €
and y?in Eq. (30) is replaced by [1— UG (0)— U,G°(0) ]~
Equation (33) then becomes
UFy(E) o

sin®—,
4Gt 2m

)eik"(Ul—{-ZUg cosk):r (40)

(41)

sin%g’ =
where

G1=exp/P(n)

™ dk
Xln[/
- E

1—€
and F, is defined by Eq. (17).

2
)e“”‘(Ul—l-ZUz cosk)] , (42)

IV. MODEL CALCULATION

We now test the theory for the simple case where
e(k)= et € cosk, and we assume that the impurity
differs from the host only in the self energy, i.e., in one
parameter U.

For this case y can be immediately found by contour
integration:

y=1FN/(82—1)", (43)

where A\=U/e;, 8= (E—e))/e1, the upper (—) sign
holds for >0, and the lower (4) sign for 8<0.
To calculate F(E), first calculate

| (1)
= e, 44
—r E—e(k)
Using contour integration we find
4 (=15 P
HE)=— . (45)

612 ,32—1

To proceed we must settle on a distribution function;
choose a normal distribution with a mean distance #,
between two adjacent impurities and a standard devia-

tion o about #g, with ¢<<n,, i.e.,
P(n)=Ae (mro?f2e (46)

where we normalize /g® P(n)dn to 1 and hence find

2 2 -1
A= —(1+erf———) .

47
o V2o 7
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Since by assumption 70/V26>>1, 4 ~ (27¢)~'/2, Now

F(E) 47['2 1 /w P( ) 1 QZ ( )
)= —o n)e™9dn 48
e (2—1)/o
where
O=[(—1)"2—|B| P
Using Eq. (46), (48) becomes
4 2 no
F(E)= il ¢ eloln2Q
e?(8°—1) 14-erf (no/V20)
1+erf(v/V20), ¥>0
(49)
1—erf(]y|V2o), v<0
where

y=mno+0o InQ.

These expressions for y and F can now be used in Eq.
(12b). An inspection of the resultant graphs evinces the
following qualitative features:

(1) For all ¢ and for all U, two impurity bands arise,
one above and one below the main band.

(2) The density of levels in these impurity bands is
in the ratio of 2 to 1, independent of ¢, where, for U >0,
the upper band is favored and for U <0, the lower band
is favored.

(3) The two impurity bands join smoothly onto the
main band—i.e., there is no gap. The net effect there-
fore is to broaden the original band by adding localized
levels to its top and bottom.

We can similarly evaluate G' from Eq. (42). It can be
shown by a straightforward calculation that

G'=[N/(*—1)10™(Q)~, (50)
where / \
(20./,”.)1 2e~no /20
= ——————=0. (51)
1+4-erf(no/ (20)1/2)
It follows from Egs. (49) and (51) that
UF 1 (erf(|y |/ (20)12
ge%qlan( ) ,
47°G! 2
so that, for that special case =0,
Xok—1 rw \"2 Qk—1)rr
= <c05-> cos’————
X1 2m 2m
(52)
Xox |2 rm\"2 rkrw
— = (cos—> sin®—,
X1 2m m

V. CONCLUSION

We have derived for a one-dimensional crystal, con-
taining many identical impurities which are distributed
statistically with a mean distance 7, between adjacent
impurities much larger than the elementary cell length,
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expressions for (a) the energy and (b) the localization
probabilities on the impurities. This is done for both the
case where the impurity differs only in the self-energy
and also where it differs in its nearest-neighbor coupling.

The energy levels are shown to merge onto the host
band and are explicitly calculated for a model case. It
is shown there that for U>0, two impurity bands are
generated, a denser one at the top, and the less dense one
at the bottom. For U <0 the situation is reversed. The
localization probabilities on the impurities are similarly
calculated and are shown to be distributed along the
impurities like a sinusoidal wave. These electrons are
therefore delocalized on the impurities.

Whether this theory can be extended to two- or three-
dimensional crystals or to include interband coupling is
not clear yet. It should be applicable to one-dimensional
macromolecules, like DNA, with widely spaced bands.

APPENDIX A

It follows, simply by expansion of Az, that any
determinant of the form of Eq. (4) obeys

Ar=yAr 1—Y11...1*ALs.
To prove Eq. (6), start with the first few terms, e.g.,

Ao=1, (A,=0)
A1=y 5
Ay=y*—y1,

A=y —y(y1*+y2?),

and then prove by induction. This latter also requires
the assumed form for Asy:

k
Dop=y"4 2. ¥ (—1)PB,(2k).

p=1

APPENDIX B

Consider first N (p,2m). This number is identical to
the number of different ways of taking p adjacent, non-
overlapping pairs of integers out of the set of integers 1
to 2m. Let us work with holes (i.e., integers nof re-
moved). Suppose p=m—1, ie., in each term of
B,.—1(2m) only one pair is missing. Hence in the set 1 to
2m we have two holes. The lowest hole must be odd, for
otherwise there is a lower hole, the upper hole must be
even, otherwise there is another hole which is even
higher. Now proceed to count. If the first hole is 1 the
second hole can be 2, 4, 2m, i.e., there are m different
sets. Proceed now to 3, 5... up to 2m—1 and get the
following table:

1st hole: No. of possible sets:
1 m
3 m—1
2m—1 1
N(m—1, 2m)= tm(m+1).
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Now let p=m—2, i.e., remove two pairs, of four
integers. The lowest hole must be odd, the next even, the
next odd, and the fourth even. Let the first hole be 1, the
second hole be 2; the number of possible sets for the
third and fourth hole is N (m—1, 2m—2). Thus we get
the following table:

1st hole: 2nd hole: 3, 4 hole:
1 2 N(m—1,2m—2)
4 N(m—1,2m—4)
2m—2 N(m—1,2).
So

m—1
Ni(m—2,2m)=73 N(m—1,2m—27).

=1

If the first hole is 3, then by same reasoning,

m—1
No(m—2,2m)=73 N(m—1,2m—27).

=2

Thus
m—1 m—1
Nm—2,2m)=3. > N(m—1;2m—27).

k=1 5=k

Define g=m—p, and then set n=m— j. We find that
the above relations suggest

m—q m—k—1

k=0 n=q—1
Expanding and setting r=m—£% yields
m—g+1

N(g2m)= Y rN(g—1,2m—2r).

r=1

(B1)
For ¢=1, 2, where we have calculated this relation, we

find
m+q
N (q72m) = ( ) .
2q

We then prove this relation for general ¢ by induction.
In terms of p,

o))

(B2)

ARTHUR BIERMAN 1

To find N(p, 2m—1), use the obvious relation
N(p, 2m—1)=N (p,2m)— N (p—1, 2m—2)
_ 2m—1—p> (B3
(", (83)

Equation (5) therefore becomes

m—1 UF\N?2m—1—p
Yl 3 gmlm2n(— 1)p< > ( , >=0, (B4)
p=1

472
or
m UPFN\? 2m—1—p
Z (_1)p 2m—1—2p< > < )20
=0 47 V4

In terms of g=m—p, we find

m m+q—1
£ (" o, @)
a=0 29—1
where
4r2y?
Z= ) (B6)
UF
Equation (B5) is equivalent to
m (32)0 (m)g(—m)
4 q q — 0 ) (B7)
G-l
where
(m) ;=T (m~+q)/T (m).
Equation (B7) becomes
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or, in terms of hypergeometric functions,
2Fi(m+1, —m—+1,%,12)=0, (B9)

which is equivalent to
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where Z/4=sin?¢. Hence
o=rr/2m, r=1,2,...m—1.

The energy levels are therefore determined by

2= (u?F /7?) sin®(rm/2m).



